Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tópicos
Tipo del documento
Intervalo de año
1.
Fluids Barriers CNS ; 19(1): 46, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1879246

RESUMEN

BACKGROUND: Knowledge of the entry receptors responsible for SARS-CoV-2 is key to understand the neural transmission and pathogenesis of COVID-19 characterized by a neuroinflammatory scenario. Understanding the brain distribution of angiotensin converting enzyme 2 (ACE2), the primary entry receptor for SARS-CoV-2, remains mixed. Smoking has been shown as a risk factor for COVID-19 severity and it is not clear how smoking exacerbates the neural pathogenesis in smokers. METHODS: Immunohistochemistry, real-time PCR and western blot assays were used to systemically examine the spatial-, cell type- and isoform-specific expression of ACE2 in mouse brain and primary cultured brain cells. Experimental smoking exposure was conducted to evaluate the effect of smoking on brain expression. RESULTS: We observed ubiquitous expression of ACE2 but uneven brain distribution, with high expression in the cerebral microvasculature, medulla oblongata, hypothalamus, subventricular zones, and meninges around medulla oblongata and hypothalamus. Co-staining with cell type-specific markers demonstrates ACE2 is primarily expressed in astrocytes around the microvasculature, medulla oblongata, hypothalamus, ventricular and subventricular zones of cerebral ventricles, and subependymal zones in rhinoceles and rostral migratory streams, radial glial cells in the lateral ventricular zones, tanycytes in the third ventricle, epithelial cells and stroma in the cerebral choroid plexus, as well as cerebral pericytes, but rarely detected in neurons and cerebral endothelial cells. ACE2 expression in astrocytes is further confirmed in primary cultured cells. Furthermore, isoform-specific analysis shows astrocyte ACE2 has the peptidase domain responsible for SARS-CoV-2 entry, indicating astrocytes are indeed vulnerable to SARS-CoV-2 infection. Finally, our data show experimental tobacco smoking and electronic nicotine vaping exposure increase proinflammatory and/or immunomodulatory cytokine IL-1a, IL-6 and IL-5 without significantly affecting ACE2 expression in the brain, suggesting smoking may pre-condition a neuroinflammatory state in the brain. CONCLUSIONS: The present study demonstrates a spatial- and cell type-specific expression of ACE2 in the brain, which might help to understand the acute and lasting post-infection neuropsychological manifestations in COVID-19 patients. Our data highlights a potential role of astrocyte ACE2 in the neural transmission and pathogenesis of COVID-19. This also suggests a pre-conditioned neuroinflammatory and immunocompromised scenario might attribute to exacerbated COVID-19 severity in the smokers.


Asunto(s)
COVID-19 , Vapeo , Enzima Convertidora de Angiotensina 2 , Animales , Astrocitos , Células Endoteliales , Humanos , Ratones , SARS-CoV-2 , Fumar/efectos adversos , Transmisión Sináptica , Fumar Tabaco
2.
J Pharmacol Exp Ther ; 375(3): 498-509, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-842063

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 virus, is turning out to be one of the most devastating global pandemics in the history of humankind. There is a shortage of effective therapeutic strategies or preventative vaccines for this disease to date. A rigorous investigation is needed for identifying and developing more effective therapeutic strategies for COVID-19. Angiotensin-converting enzyme 2 (ACE2), a crucial factor in COVID-19 pathogenesis, has been identified as a potential target for COVID-19 treatment. Smoking and vaping are potential risk factors for COVID-19 that are also shown to upregulate ACE2 expression. In this review, we have discussed the pathobiology of COVID-19 in the lungs and brain and the role of ACE2 in the transmission and pathobiology of this disease. Furthermore, we have shown possible interactions between nicotine/smoking and ACE2 in the lungs and brain, which could aggravate the transmission and pathobiology of COVID-19, resulting in a poor disease outcome. SIGNIFICANCE STATEMENT: This review addresses the present global pandemic of coronavirus disease 2019 (COVID-19) with respect to its pathobiology in the lungs and brain. It focuses on the potential negative impact of tobacco and nicotine exposure on the outcomes of this disease by interaction with the angiotensin-converting enzyme 2 receptor. It adds to the time-sensitive and critically important growing knowledge about the risk factors, transmission, pathobiology, and prognosis of COVID-19.


Asunto(s)
COVID-19/epidemiología , Fumar/epidemiología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/virología , COVID-19/etiología , COVID-19/transmisión , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/virología , Nicotina/metabolismo , Nicotina/toxicidad , SARS-CoV-2/patogenicidad , Fumar/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA